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Interfaces of semi-infinite smectic liquid crystals and equations of state of infinite smectic stacks
of semiflexible manifolds

Lianghui Gao and Leonardo Golubovic´
Physics Department, West Virginia University, Morgantown, West Virginia 26506-6315

~Received 15 October 2002; published 27 February 2003!

In this paper, we first elucidate the classical problem of the elastic free energy of a semi-infinite smectic-A
liquid crystals, that fills the semispace above an interface~a boundary smectic layer! of a given shape. For the
free energy of this interface, we obtain an effective interface Hamiltonian that takes into account the system
discreteness introduced by the layered character of smectic-A liquid crystals. It is thus applicable to both short
and long wavelength fluctuations of the interface shape. Next, we use our interface Hamiltonian to develop an
efficient approach to the statistical mechanics of stacks ofN semiflexible manifolds, such as two-dimensional
smectic phases of long semiflexible polymers and three-dimensional lamellar fluid membrane phases. Within
our approach, doing the practically interesting thermodynamic limitN→` is reduced to considering a small
stack, with just a few interacting manifolds, representing a subsystem of an infinite smectic. This dramatic
reduction in the number of degrees of freedom is achieved by treating the first~the last! manifold of the small
stack as an interface with the semi-infinite smectic medium below~above! the small stack. We illustrate our
approach by considering in detail two-dimensional sterically stabilized smectic liquid crystals of long semi-
flexible polymers with hard-core repulsion. Smectic bulk (N5`) equation of state and the universal constant
characterizing entropic repulsion in these phases are obtained with a high accuracy from numerical simulations
of small subsystems with just a few semiflexible polymers.

DOI: 10.1103/PhysRevE.67.021708 PACS number~s!: 61.30.Jf, 87.15.2v, 82.70.Kj
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I. INTRODUCTION

Substantial effects of thermal fluctuations keep sme
liquid crystals and smecticlike phases in the focus of th
retical and experimental statistical physics@1–8#. The most
recent investigations of the fundamental properties of sm
tics are related to structural and thermodynamic propertie
two-dimensional~2D! smectic-A phases@1,2#. They have
been stimulated by recent discovery of such a phase of
DNA molecules intercalated between lipid membranes
DNA-cationic-lipid complexes@3–8#. In these systems, lon
semiflexible DNA molecules themselves form stacks of o
dimensional smectic layers that are low-dimensional ana
of lamellar fluid membrane phases and other thr
dimensional smectic-A phases@9–15#. In smectic liquid
crystals, thermal fluctuations affect material properties ov
broad range of length scales. Thus, the long length s
fluctuations~with wavelength typically much larger than th
smectic phase perioda), destroy true long-range positiona
order of smectic layers@1,14,15#, and induce the anomalou
elastic behavior in both 2D and 3D smectic liquid cryst
@2,16#. On the other side, shorter, mesoscopic length sc
fluctuations may have significant effects on basic sme
properties such as the equation of state. Typical example
this are sterically stabilized smectic phases of large flex
manifolds, such as the stacks of long semiflexible polym
or fluid membranes interacting with purely hard-core rep
sion @9–13#. In these lyotropic smectic liquid crystals, elas
constants and the smectic equation of state, that relates
isotropic osmotic pressureP to the smectic perioda, are
purely entropic in origin@9–11,17–23#. These properties ar
dominated by strong fluctuations of thermally rough flexib
manifolds forming smectic stacks.
1063-651X/2003/67~2!/021708~13!/$20.00 67 0217
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Similar entropic effects may be significant also in smec
systems, in which the interactions between flexible ma
folds are not purely steric. Smectic elastic constants, eq
tion of state, etc., result from a subtle interplay between
tropic effects and various microscopic~bare! interactions
between flexible manifolds. Finding basic material propert
of smectic stacks ofN interacting flexible manifolds is, gen
erally, a difficult statistical mechanics problem, especially
the experimentally interesting thermodynamic limitN→`
needed to obtain the bulk properties of these phases.

In this paper, we attack this complex multimanifold pro
lem by relating it to another interesting problem of the phy
ics of smectic liquid crystals. It is the classical problem
the elastic energy ofsemi-infinitesmectic-A liquid crystal
that fills the semispace above a boundary smectic layer~in-
terface! of a given shape@15#. In the continuum limit, as
discussed by de Gennes and Prost@15#, free energy of this
semi-infinite smectic liquid crystal is given by an effectiv
interface Hamiltonian, with a suitably defined interfaci
tension

dg5AKsmBsm. ~1.1!

Here,Ksm and Bsm, are, respectively, smectic bending an
compressibility elastic moduli.Ksm5k/a, for a stack of
flexible manifolds with bending rigidityk, that forms a
smectic liquid crystal with the perioda. In this paper, we first
generalize this standard continuous smectic interface Ha
tonian by taking into account the system discreteness du
the layered character of smectic liquid crystals, as detaile
Sec. II. Therein, we obtain an effective interface free ene
functional applicable to both short and long wavelength flu
©2003 The American Physical Society08-1



th

le

io

a

io

v
its
y

d

op
th
o-
er
m

ly
-

tic
ve
s
w
s

q
ite
ti

ly
ry

in
em
in

er
a

or
te
a
o

rlo

s

III

all
ply
the
of
in
m
,

the

y
il-
e to

ve-

n-

-

s
pic

e

e
s
are

L. GAO AND L. GOLUBOVIĆ PHYSICAL REVIEW E 67, 021708 ~2003!
tuations of the interface shape. It has the form, for
d-dimensional interfaces of (d11)-dimensional smectic-A
liquid crystals,

Hint5
1

2E ddq

~2p!d
Ksemi~q!uh̃~q!u2. ~1.2!

Here, h̃(q) is the Fourier transform of the interface profi
(q5uqu!, whereasKsemi(q) is the dispersion relation giving
the free energy cost associated with the interface fluctuat
with the wave vectorq. The detailed form ofKsemi(q) is
discussed in Sec. II, see Eq.~2.16! therein. For smallq,
Ksemi(q)'dgq2, and our dispersion relation reduces to th
of the simple interface model, with interfacial tensiondg in
Eq. ~1.1!, discussed in the classical liquid crystal discuss
of de Gennes and Prost@15#. On the other side, for largeq,
Ksemi(q)'kq4, corresponding to the bending elastic beha
ior of a free manifold. In between these two extreme lim
the actual interface fluctuation energy cost is governed b
more complex dispersion relation derived and discusse
Sec. II.

We use our interface Hamiltonian in Sec. III, to devel
an efficient approach to the statistical mechanics of
stacks ofN d-dimensional flexible manifolds, such as tw
dimensional smectic phases of long semiflexible polym
(d51) and three-dimensional lamellar phases of fluid me
branes (d52). Within our approach, doing the practical
interesting thermodynamic limitN→` is reduced to consid
ering asmall stack~with a few interacting manifolds! that is
a subsystemof an infinite smectic stack. Such a drama
reduction in the number of degrees of freedom is achie
by treating the first~the last! manifold of the small stack a
an interface with the semi-infinite smectic medium belo
~above! the small stack. The effective free energy of the
interface manifolds is as in Eq.~1.2!. Within our approach to
infinite smectic liquid crystals, the dispersion relation in E
~1.2! takes into account the manifolds in the semi-infin
media that are above and below the small stack represen
a subsystem of an infinite smectic. By the use of Eq.~1.2!,
the manifolds in the two semi-infinite media are effective
integrated out of the infinite system partition function, ve
much in the spirit of effective Hamiltonians employed~in a
different way! in the renormalization group theories@24#.
Thus, the difficult statistical mechanics problem with an
finite number of manifolds is reduced to a tractable probl
of a small stack with just few manifolds, as detailed
Sec. III.

Our approach to infinite smectic stacks is illustrated h
by considering in detail sterically stabilized two-dimension
smectic phases of long semiflexible polymers with hard-c
repulsion~Sec. IV!. Thanks to the aforementioned charac
of our approach, the equation of state and universal const
characterizing entropic elasticity in these phases are
tained, with a high accuracy, already from Monte Ca
simulations of small stacks with just a few polymers.

This paper is organized as follows: In Sec. II, we discu
the surface free energy of semi-infinite smectic-A liquid
crystals, and derive our interfacial Hamiltonian. In Sec.
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we incorporate the results of Sec. II into our theory of sm
subsystems of infinite smectic stacks. In Sec. IV, we ap
our approach to investigate, by Monte Carlo simulations,
sterically stabilized 2D smectic liquid crystals comprised
long semiflexible polymers. We summarize our findings
Sec. V. Appendix A illuminates the discussion of Sec. II fro
a different point of view. Also, therein and in Appendix B
we discuss a few substantial details of our simulations.

II. SEMI-INFINITE SMECTIC- A LIQUID CRYSTALS
OVER BOUNDARY OF A GIVEN SHAPE

In this section we address the classical problem of
elastic free energy of a semi-infinite smectic-A liquid crystal
that fills the semispace above a boundary smectic layer~in-
terface! of a given shape@15#, see Fig. 1. For the free energ
of this interface, we derive here an effective interface Ham
tonian that takes into account the system discreteness du
layered nature of smectic-A liquid crystals. We thus obtain
an interface model applicable to both short and long wa
length fluctuations of the interface shape, see Eqs.~2.15! and
~2.16! in the following.

To discuss semi-infinite smectic liquid crystals, we co
sider a smectic stack ofN d-dimesional flexible manifolds
~with bending rigidityk), each described by its height func
tion hn(x) above d-dimensionalx plane ~base plane!, n
51,2, . . . ,N. The effective free energy functional of thi
(d11)-dimensional smectic system at constant isotro

FIG. 1. A semi-infinite smectic stack of manifolds over th
manifold with the height functionh1(x) at the boundary~interface!
of the stack. By the use of the effective interface model forh1(x) in
Eqs.~2.23! and~2.24!, the manifolds in the smectic medium abov
the interface, withn52,3, . . . , areintegrated out of the system’
partition function. Instantanous configurations of the manifolds
given by the solid lines. For agiven h1(x), the manifolds fluctuate
around the average positions^hn(x)& indicated by dashed lines.
8-2
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INTERFACES OF SEMI-INFINITE SMECTIC LIQUID . . . PHYSICAL REVIEW E67, 021708 ~2003!
pressureP has the form@8,23#,

He f f~$hn%!5E ddxF P@hN~x!2h1~x!#

1 (
n51

N21

Ve f f„hn11~x!2hn~x!…

1 (
n51

N
k

2S ]2hn~x!

]x2 D 2G . ~2.1!

Here, P is the isotropic osmotic pressure exerted on
stack, whereasVe f f is theeffectiveintermanifold interaction
potential @23#. Ve f f takes into account entropic effects
manifold fluctuations@23#. Minimization of the effective free
energy functional in Eq.~2.1! can be used to investigate no
uniform smectic configurations induced, for example, by
ternal forces displacing system boundaries@8#. In the ab-
sence of such forces, minimizing Eq.~2.1!, with the uniform
hn11(x)2hn(x)5a, yields the equilibrium smectic equatio
of state

P52
]Ve f f~a!

]a
, ~2.2!

determining, with appropriately definedVe f f(a), the smectic
phase perioda for a given osmotic pressureP @23#. To in-
vestigate spatially nonuniform equilibrium configurations
the smectic stack, we expand Eq.~2.1! around its minimum
to obtain the harmonic smectic elastic Hamiltonian

Hel5E ddxFa (
n51

N21
Bsm

2 S hn11~x!2hn~x!2a

a D 2

1a(
n51

N
Ksm

2 S ]2hn~x!

]x2 D 2G , ~2.3!

where

Ksm5
k

a
~2.4!

is the smectic bending modulus, and

Bsm52a
]P~a!

]a
5a

]2Ve f f~a!

]a2
, ~2.5!

is the true ~renormalized! smectic compressibility@23#.
Equation~2.3!, with N5`, can be directly used to find th
free energy of semi-infinite smectic stack in the situations
which the first member of the stack (n51) has agivenshape
h1(x), see Fig. 1. For that purpose, we introduce, into E
~2.3!, the smectic phonon variablesun(x), via

hn~x!5un~x!1~n21!a, ~2.6!
02170
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and minimize the discrete smectic Hamiltonian~2.3! over
u2(x), u3(x), . . . , for afixed form of u1(x)[h1(x) to ob-
tain

052Bsm

un11~x!22un~x!1un21~x!

a2
1KsmS ]2

]x2D 2

un~x!

~2.7!

for n52,3, . . . . Solving Eq.~2.7! yields theaverageposi-
tions of smectic layers ^hn(x)&5(n21)a1un(x), n
52,3, . . . , for agiven shape of the interfacial manifold
h1(x)5u1(x), see Fig. 1. To solve Eq.~2.7!, we introduce
the partial Fourier transform,

un~x!5E ddq

~2p!d
eiq•xũn~q!, ~2.8!

reducing Eq.~2.7! to the difference equation

052Bsm

ũn11~q!22ũn~q!1ũn21~q!

a2
1Ksmq4ũn~q!,

~2.9!

(q5uqu). We need the solution to Eq.~2.9! satisfying the
boundary conditions:un→0 for n→`, and u15h1, the
given shape of then51 manifold in the stack, see Fig. 1.
has the form

ũn~q!5@R~q!#n21h̃1~q!. ~2.10!

By Eqs.~2.9! and ~2.10!,

R~q!221
1

R~q!
5a2l2q4, ~2.11!

where

l5AKsm

Bsm
5A k

2a2
]P~a!

]a

~2.12!

is the de Gennes penetration length of the smectic stack
un→0 for n→`, we need the solution to Eq.~2.11! which is
less than 1. It is easily found to be

R~q!511
1

2
a2l2q42Aa2l2q41S a2l2q4

2 D 2

.

~2.13!

The system’s free energy Eq.~2.3! can be, by Eqs.~2.6! and
~2.8!, expressed as

Hel5E ddq

~2p!d
a(

n51

` FBsm

2 U ũn11~q!2ũn~q!

a2 U2

1
Ksm

2
q4uũn~q!u2G ~2.14!

in terms of the partial Fourier transform variablesũn(q). By
inserting, into Eq.~2.14!, ũn(q) given by Eqs.~2.10! and
~2.13!, we find, by a straightforward calculation, the form
the interface Hamiltonian
8-3
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Hint[Hel5
1

2E ddq

~2p!d
Ksemi~q!uh̃1~q!u2 ~2.15!

with

Ksemi~q!5A~dgq2!21S kq4

2 D 2

1
kq4

2
. ~2.16!

Here,

dg5AKsmBsm5Bsml ~2.17!

is the ‘‘surface tension’’ noted in previous studies@8,15#. By
Eqs.~2.4! and ~2.5!, dg can be expressed also as

dg5A2k
]P~a!

]a
~2.18!

in terms of the quantities more appropriate for the sme
stacks of manifolds.

We comment on the physical aspects of our interfa
model in Eqs.~2.15! through~2.18!: First, as usual, the in
terface dispersion relationKsemi(q) in Eq. ~2.16! vanishes at
q50. This must be the case, as the uniform configuration
the boundary manifold,h1(x)5const, corresponds to
simple translation of the whole stack and thus costs no
ergy. Next, note that the form ofKsemi(q) suggests the char
acteristic length scaleLb ~i.e., momentum scaleqb), defined
by

Lb5
1

qb
5A k

dg
5Aal ~2.19!

the ‘‘healing length,’’ encountered in previous studies~see
Ref. @8#!. At this ~momentum! scale, the two terms under th
square root in Eq.~2.16! balance. By Eq.~2.18!, Lb can be
expressed also as

Lb5S k

2
]P~a!

]a
D 1/4

~2.20!

in terms more appropriate for smectic stacks of manifol
By Eq. ~2.16!, one recovers the two characteristic behavio

~i! For q!qb , by expanding Eq.~2.16!,

Ksemi~q!5dg q21O~q4! ~2.21!

corresponding to interfaces with the surface tension5dg. In
this long length scale limit, our interface model reduces
the standard smectic interface model@8,15#.

~ii ! For q@qb , by expanding Eq.~2.16! rewritten as

Ksemi~q!5
1

2
kq4FA11S 2dg

kq2 D 2

11G , ~2.22!

one finds
02170
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Ksemi~q!5kq41
~dg!2

k
1OS 1

q4D . ~2.23!

By Eqs.~2.5! and ~2.18!,

Ksemi~q!5kq41
Bsm

a
1OS 1

q4D , ~2.24!

for q@qb . The first leading term in Eq.~2.24! corresponds
to the bending elastic energy of a free manifold. This te
actually originates from the bending energy of the first,
terfacial manifold of the stack, with the height functio
h1(x), see Fig. 1. However, this manifold is not really fre
as evidenced by the second term in Eqs.~2.23! and ~2.24!.
This term is a constant resembling the standard ‘‘mass’’ te
in field theories. The origin of this quasimass can be tra
from the elastic model in Eq.~2.3! by fixing therein the
height h2(x) of the n52 manifold to a flat immobile con-
figuration. The dispersion relation of the interfacial,n51
manifold would then have the from as in Eq.~2.24! but with-
out the O(1/q4) terms therein. The presence of these ter
simply reflects the fact that then52 manifold is not flat,
and, moreover, that it is coupled to then53 manifold, which
itself is coupled to then54 manifold, and so on. The exac
form of the interface dispersion relation in Eq.~2.16! thus
reflects the interactions betweenall manifolds in the smectic
stack. They ‘‘dress’’ the interface manifoldh1(x) in such a
way that it is no longer a free one~with dispersion.kq4),
but, rather, a dressed one, with the dispersion relation a
Eq. ~2.16!. To highlight this important feature, in Appendix A
we present an alternative discussion of our model in E
~2.15! and~2.16! playing the substantial role in the develo
ments of the following sections.

The interface model in Eqs.~2.15! and ~2.16! provides a
simple and global approach to handle the interface fluct
tion over the entire range of length scales and momen
scales (q!qb , q@qb , and, also,q;qb). This is an essentia
feature needed for the model’s applications detailed in
following sections. Prior to them, we would like to stre
some features of our interface model:

~i! The model has been derived by means of the harmo
approximation Eq.~2.3! to the effective anharmonic stac
model Eq.~2.1!. The interface model in Eq.~2.15! is thus a
harmonic model, quadratic in the interface shapeh1(x). An-
harmonic terms may have been included in Eq.~2.15! along
similar lines, by considering the full anharmonic sta
model. In a practical application of the harmonic interfa
model, such anharmonic effects can be ignored if one
~self-consistently! confirm that the local smectic strains a
small, en5@hn11(x)2hn(x)2a#/a5@un11(x)2un(x)#/a
!1 for all manifolds within the semi-infinite stack. On th
other hand, in our applications to the sterically stabiliz
phases~see Sec. IV!, one typically hasen5O(1) ~for the
manifolds neighboring the small stack, see Secs. III and I!.
Still, even for this application, the harmonic interface mod
Eq. ~2.15!, provides a reasonable approximation to the ex
anharmonic interface model, as evidenced by the results
cussed in Sec. IV.
8-4
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~ii ! The effective anharmonic model, Eq.~2.1!, as well as
a more microscopic model discussed in Sec. III, ignore be
ing energy anharmonicities yielding the softening of t
manifold rigidity k, for d52 ~fluid membrane! and d51
~semiflexible polymers!, due to crumpling effects@21#. These
effects may be significant in the sterically stabilized pha
@11#. However, even in these phases, the softening of
bending rigidity k can be ignored ifa!jp , the manifold
persistence length@11#. We will confine our discussion to th
limit a/jp!1, and ignore the crumpling effects. Most of th
related theoretical studies have assumed the limita/jp!1,
in part, because it is frequently experimentally realized~e.g.,
in very recent studies Refs.@3–5#!. These effects are quali
tatively substantial only in sterically stabilized phases w
a;jp . Such a smectic is close to the phase transition line
isotropic liquid phase@8,25#. We will, however, confine our
discussions to the regiona!jp , away from this transition
line.

~iii ! Finally, the effective stack model, Eq.~2.1!, as well
as a more microscopic stack model discussed in Sec.
both break rotational invariance by assuming that inter
tions depend on the ‘‘vertical distance’’hn11(x)2hn(x) be-
tween manifolds. The resulting harmonic model~2.3! is still
the standard Landau-Peierls harmonic smectic model@14#, as
one can see by assuming in Eq.~2.3! the usual continuum
limit, z5na andun(x)5u(z,x) therein. However, the verti
cal distance approximation suppresses the anharmonic t
that are, in the full nonlinear smectic model, responsible
the anomalous elasticity effects present in 3D smectic liq
crystals@16#, as well as in 2D smectic liquid crystals@2#. In
this paper, we ignore these effects, in part because they
usually quantitatively weak, for example, in the recen
studied experimental systems@3,4#, as discussed in more de
tail in Refs. @7,8,23#. Besides, as already noted in Ref.@8#,
the anomalous elasticity effects are pressumably exactly
celed in the interfacial model for 2D smectic liquid crysta
which are in the focus of our investigation~see Sec. IV!:
Anomalous elasticity produces a substantial length scale
pendence~renormalization! of the smectic elastic constan
Ksm andBsm at long length scales. It may thus qualitative
modify only the smallq interfacial behavior in Eq.~2.21!,
with dg5AKsmBsm therein replaced by the momentum d
pendent tensiondg(q)5AKsm(q)Bsm(q), with the momen-
tum dependent smectic elastic constantsKsm(q) andBsm(q).
However, by Ref.@2#, for 2D smectic liquid crystals one ha
exactlyKsm;1/q1/2 andBsm;q1/2 at smallq, as found by an
exact mapping of 2D smectic liquid crystals onto the Kard
Parisi-Zhang model. Thus, accidentally, the prod
Ksm(q)Bsm(q), entering the tensiondg(q), is not length
scale dependent in 2D smectic liquid crystals, indicating
cancellation of the anomalous elasticity effects in the ex
interfacial model for these systems.

III. SMALL SUBSYSTEMS OF INFINITE SMECTIC
STACKS

Here, we use our interface Hamiltonian of Sec. II to d
velop an efficient approach to the statistical mechanics
infinite stacks of flexible manifolds, such as two-dimensio
02170
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smectic phases of long semiflexible polymers and thr
dimensional lamellar fluid membrane phases. Within our
proach, the practically interesting thermodynamic limit, w
infinite number of manifolds, is reduced to considering
small stack, with just a few interacting manifolds, represe
ing a subsystem of an infinite smectic liquid crystal. Th
dramatic reduction in the number of degrees of freedom
achieved by treating the first~the last! manifold of the small
stack as an interface with the semi-infinite smectic medi
below ~above! the small stack, as detailed in the following

The objects of our discussion here aremicroscopicsmec-
tic stack Hamiltonians in the constant pressure ensem
@8,23# of the form

Hmic~$hn%!5E ddxF (
n52`

`

$P@hn11~x!2hn~x!#

1V„hn11~x!2hn~x!…%

1 (
n52`

`
k

2S ]2hn~x!

]x2 D 2G . ~3.1!

Here, in contrast to the effective stack Hamiltonian~2.1!,
V„hn11(x)2hn(x)… in Eq. ~3.1! represents the actual~micro-
scopic! interaction potential between fluctuating manifold
We assume here only the nearest neighbors interaction in
stack. Further neighbors interaction can be included in
theory, but at the expense of the simplicity and clarity need
in this discussion. We note, however, that for the interest
case of sterically stabilized smectic phases, with purely ha
core repulsion, one has~by definition! only the nearest
neighbors interaction. To proceed, we split the manifolds
Eq. ~3.1! into three groups:~i! the ‘‘small stack’’ comprised
of M manifolds, withn51,2,3, . . . ,M ; ~ii ! the upper smec-
tic medium, comprised of the manifolds withn5M11,M
12, . . . ,̀ ; and ~iii ! the lower smectic medium, comprise
of remaining manifolds withn50,21,22, . . . ,̀ . This par-
tition of the stack is conceptualized in Fig. 2. We perform
corresponding division also in Hamiltonian~3.1!, by writing
it as

Hmic5Hsmall~h1 ,h2 , . . . ,hM !1Hupper~hM ,hM11 , . . . !

1Hlower~h1 ,h0 ,h21 ,h22 , . . . !, ~3.2!

with Hsmall(h1 ,h2 , . . . ,hM) of the form as in Eq.~3.1!, but
with the first sum running fromn51 to n5M21, and the
second sum running fromn52 to n5M21. Likewise,
Hupper(hM ,hM11 , . . . ) also has the form as in Eq.~3.1!, but
with both sums running fromn5M to n51`. Finally,
Hlower(h1 ,h0 ,h21 ,h22 , . . . ) also has the form as Eq.~3.1!,
but with first sum running fromn52` to n50, and the
second sum running fromn52` to n51. The virtue of the
partition in Eq.~3.2! is seen by considering the infinite stac
partition function

Z5 )
n52`

` E Dhn e2Hmic($hn%)/kBT, ~3.3!
8-5
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which is easily shown to beexactlyequal to

Z5 )
n51

M E Dhn e2Hsmall
(e f f) (h1 ,h2 , . . . ,hM)/kBT. ~3.4!

Here,Hsmall
(e f f) is the effectiveHamiltonian of the small stack

of the form

Hsmall
(e f f) ~h1 ,h2 , . . . ,hM !5Hsmall~h1 ,h2 , . . . ,hM !

1Hint
~ low!~h1!1Hint

~up!~hM !.

~3.5!

In Eq. ~3.5!,

Hint
~up!~hM !

52kBT lnH )
n5M11

` E Dhn e2Hupper(hM ,hM11 , . . . )/kBTJ
~3.6!

is the effective Hamiltonian for the interfacial manifo
hM(x), whereas

Hint
~ low!~h1!

52kBT lnH )
n52`

0 E Dhn e2Hlower(h1 ,h0 ,h21 , . . . )/kBTJ
~3.7!

is the effective Hamiltonian for the interfacial manifo
h1(x). It is easy to show that theformsof the two interfacial
Hamiltonians defined by Eqs.~3.6! and~3.7! are entirely the
same. More precisely,Hint

( low)(h)5Hint
(up)(2h).

FIG. 2. The partition of an infinite smectic stack of manifol
with the height functionshn(x) into the ‘‘small stack’’ (n
51,2, . . . ,M ), the ‘‘upper medium’’ (n5M11,M12, . . . ), and
the ‘‘lower medium’’ (n50,21,22, . . . ). Here,h1(x) andhM(x)
are the interfacial manifolds.
02170
By the above construction, any infinite smectic avera
involving the degrees of freedom of the small stack can
obtainedexactly by using the effective Hamiltonian of th
small stackHsmall

(e f f) defined by Eq.~3.5!. In particular, the
interesting average

a~P!5^hn11~x!2hn~x!&P ~3.8!

giving the equilibrium value of the smectic phase perioda as
a function of the isotropic osmotic pressureP ~i.e., the smec-
tic equation of state! can be obtained exactly either by usin
the infinite smectic stack Hamiltonian~3.1!, or by using the
effective small stack Hamitonian, Eq.~3.5!, with hn and
hn11 being the members of the small stack. In fact, rema
ably, to obtain the infinite smectic equation of state in E
~3.8!, it suffices to consider the effective Hamiltonian of th
small stack with justM52 manifoldsh1(x) andh2(x), and
use it to calculate the average

a~P!5^h2~x!2h1~x!&P,M52 .

By the virtue of our definition ofHsmall
(e f f) , this small stack

average is exactly equal to that obtained by considering
infinite smectic stack, or by considering the small stack w
just M manifolds ~any M ) and using its effective Hamil-
tonian to calculateany of the M21 averages

a~P!5^hn11~x!2hn~x!&P,M , n51,2, . . . ,M21.

They are all equal to each other, and thus equal to the a
age

a~P!5 K hM~x!2h1~x!

M21 L
P,M

. ~3.9!

Thus, by usingHsmall
(e f f) , the original difficult problem of the

infinite stack is reduced to that of the small stack with jus
few manifolds (M52,3, or so!.

Technical feature of using the effective small sta
Hamiltonian, Eq.~3.5!, is that it requires the exact form o
the interfacial Hamiltonian in Eq.~3.6! @or in Eq.~3.7!#. Hint
can be found, in principle, by doing the reduced partiti
function in Eq. ~3.6!, for a fixed shape of the interfacia
manifold hM(x). Equivalently, in the spirit of Sec. II, this
problem can be solved by using the appropriate effec
Hamiltonian Hupper

(e f f) (hM ,hM11 , . . . ) of the upper medium
and minimizing it overhM11(x), hM12(x), . . . , for afixed
hM(x). In practice, none of these procedures can be imp
mented exactly, and one must resort to sound approximat
to Hint . The harmonic interfacial Hamiltonian derived i
Sec. II is the most natural first candidate for this purpose
has the desirable property~necessary for the present purpos!
that it can be applied to interfacial fluctuations of all leng
scales, see Sec. II. Thus, we will approximate the exactHint
with interfacial Hamiltonian defined in Eqs.~2.15! and
~2.16!. Consequently, the exact small stack effective Ham
tonian, Eq.~3.5!, is approximated by
8-6
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Hsmall
(e f f) ~h1 ,h2 , . . . ,hM !

5
1

2E ddq

~2p!dKsemi~q!uh̃1~q!u2

1
1

2E ddq

~2p!dKsemi~q!uh̃M~q!u2

1 (
n52

M21 E ddq

~2p!d

k

2
q4uh̃n~q!u2

1 (
n51

M21 E ddx$V„hn11~x!2hn~x!…

1P@hn11~x!2hn~x!#% ~3.10!

with Ksemi(q) defined in Eq.~2.16!. It is important to stress
that this approximation can be controlled. This can be d
by calculating the practically significant average in Eq.~3.9!
by using the approximative small stack Hamiltonian in E
~3.10!. Let us denote this average as

a5 K hM~x!2h1~x!

M21 L
M

[ f MS P,
dP

daD . ~3.11!

Recall that, for theexact Hsmall
(e f f) , the average in Eq.~3.11!

would be M independent. With a goodapproximative
Hsmall

(e f f) , however, one may expect that the average in
~3.11! only weakly depends onM, and that the thermody
namic limit is quickly approached with increasingM. Our
approximativeHsmall

(e f f) in Eq. ~3.10! indeed provides such
quick convergence to theexactthermodynamic limit behav-
ior even in the case of highly anharmonic sterically stabiliz
phases, as documented in Sec. IV.

Note that the average in Eq.~3.11! depends not only onP,
but also on (dP/da) @as emphasized in Eq.~3.11!#. This is
because this derivative actually enters the dispersion rela
Ksemi(q) in the effective small stack Hamitonian~3.10! @see
Eqs.~2.16! and~2.18!#. Next, note that with a known form o
the function f M in Eq. ~3.11!, this equation represents th
first-order ordinary differential equation for the functio
P(a). Solving it eventually yields the desired equation
stateP(a). In the following section, we illustrate this proce
dure by considering the interesting example of sterically s
bilized smectic stacks ofd-dimensional manifolds.

IV. STERICALLY STABILIZED SMECTIC LIQUID
CRYSTALS

In this section, the approach of Sec. III is illustrated
considering in detail the difficult statistical mechanics pro
lem of sterically stabilized smectics of flexible manifold
with hard-core repulsion@9–11,17,21–23#. We will show
here that the exact thermodynamic limit equation of state
universal constants characterizing entropic elasticity in th
phases can be obtained with a high accuracy already f
numerical simulations involving small stacks with just a fe
manifolds. In these smectic systems, the intermanifold po
tial is the hard-core repulsion potential, of the form
02170
e

.

.

d

on

f

-

-

d
e
m

n-

Vhc~r !5H 0, r .0

`, r ,0,
~4.1!

with r 5hn11(x)2hn(x). To proceed, it will be convenien
to transform the reduced effective Hamiltonian of the sm
stack, Eq.~3.10!, Hsmall

(e f f) /kBT into a dimensionless form. In
fact, for d,4, the stack model has a finite continuum lim
Dx→0 @23#, and can be thus freely rescaled as

x5Lxx8, hn~x!5Lhhn8~x8!, ~4.2!

with arbitrary rescaling constants~length units! Lx and Lh .
@In terms of momentum variables in Eq.~3.10!, this corre-
sponds toq5(Lx)

21q8 and h̃n(q)5Lh(Lx)
2dh̃n8(q8).# Note

that the hard-core potential in Eq.~4.1! is actually invariant
under any rescaling, as Vhc„hn11(x)2hn(x)…
5Vhc„hn118 (x8)2hn8(x8)…. Under this rescaling, Eq.~3.11!
transforms simply as

a5 K hM~x!2h1~x!

M21 L 5LhK hM8 ~x8!2h18~x8!

M21 L . ~4.3!

A convenient choice for the length unitLx is to identify it
with the healing lengthLb , see Eq.~2.19! and~2.20!. This is
the unique length scale present in the interfacial dispers
relation Ksemi(q) that enters the small stack Hamiltonia
~3.10!, see Sec. II and Eq.~4.11! below. Thus, we set

Lx5Lb5S k

2
dP

da
D 1/4

. ~4.4!

Next, some thought suggests that the convenient choice
the length unitLh is

Lh5aVP, ~4.5!

whereV andP are dimensionless quantities defined by

V5
P~a!

2a
dP~a!

da

52
1

d ln P~a!

d ln a

~4.6!

and

P5AP12d/4a11d/4kd/4

kBT
V11d/4. ~4.7!

With the above choice ofLh , Eq. ~4.3! yields the equation

1

V
5

f M ,d~P!

P
. ~4.8!

Here,

f M ,d~P!5K hM8 ~x8!2h18~x8!

M21 L
P,M

, ~4.9!
8-7



th

i

e
b-

se

of
B.
o

he

r

.

q.

n-

ace

ian
ce
-

,

t

idly
t a

ctic

ms
the
ical
ose
l
l

re

for
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where the equilibrium average is done with respect to
rescaled reduced small stack effective Hamiltonian

H̄P~$h8%!5
Hsmall

(e f f)

kBT

5
1

2E ddq8

~2p!d
Ksemi8 ~q8!uh̃18~q8!u2

1
1

2E ddq8

~2p!d
Ksemi8 ~q8!uh̃M8 ~q8!u2

1
1

2 (
n52

M21 E ddq8

~2p!d
~q8!4uh̃n8~q8!u2

1 (
n51

M21 E ddx8$Vhc„hn118 ~x8!2hn8~x8!…

1P@hn118 ~x8!2hn8~x8!#% ~4.10!

with

Ksemi8 ~q8!5A~q82!21S q84

2 D 2

1
q84

2
. ~4.11!

Notably, the only continuous parameter entering the Ham
tonian in Eq.~4.10! @and, thus, the average in Eq.~4.9!# is
the dimensionless pressureP. The universal shape of th
function f M ,d(P) can be obtained by calculating the equili
rium average in Eq.~4.9!, e.g., by Monte Carlo~MC! simu-
lations, as done in the following. For that purpose, we u
the translational invariance of the system~along thex direc-
tions!, implying

f M ,d~P!5^r& ~4.12!

with

r5

E ddx8@hM8 ~x8!2h18~x8!#

AB~M21!
. ~4.13!

Here, AB5*ddx8 is the stack base area. Eqs.~4.12! and
~4.13! provide an efficient way of obtaining accurate form
f M ,d(P) from MC simulations, as discussed in Appendix
Once the form off M ,d(P) is known, one may proceed t
calculate the equation of stateP(a). This can be done by
solving the first-order differential equation forP(a) that is
obtained by combining Eqs.~4.6! through ~4.8! @see, also,
the end of Sec. III#. The equation of state corresponds to t
physical solution of this equation, withP(a)→0 asa→`.
This solution can be easily found by noting that Eqs.~4.6!
through~4.8! are consistent withP(a) decaying as a powe
law of a. For this solution,V in Eq. ~4.6! is simply a con-
stant, and thus, by Eq.~4.8!, P is a constant. Thus, by Eq
~4.7!, we obtain the smectic equation of state in the form

P~a!5āM~d!
~kBT!4/(42d)

kd/(42d)a(41d)/(42d)
~4.14!

with the universal constant
02170
e

l-

d

āM~d!5
P8/(42d)

V (41d)/(42d)
. ~4.15!

Here, by Eqs.~4.14! and ~4.6!, one obtains

V5
42d

41d
~4.16!

yielding further, by Eq.~4.8!,

41d

42d
5

f M ,d~P!

P
. ~4.17!

Thus, by Eqs.~4.17! and ~4.15!,

āM~d!5S 41d

42dD (41d)/(42d)

P8/(42d), ~4.18!

whereP is a universal constant to be found by solving E
~4.17! with a known form of the functionf M ,d(P).

To summarize the above algorithm: The universal co
stant āM(d) in the smectic equation of state~4.14! can be
found by Eq.~4.18!, with P therein found by solving Eq.
~4.17!, with the functionf M ,d(P) therein found by doing the
average in Eq.~4.12! with respect to the Hamiltonian~4.10!.
This procedure yields the universal constantāM(d) that de-
pends not only on the manifold dimensiond, but also on the
number of manifolds in the small stackM. This M depen-
dence reflects the approximative nature of the interf
Hamiltonian ~for the manifoldsh1 and hM) that has been
used in the approximative small stack effective Hamilton
Eq. ~3.10!: As discussed in Sec. III, with the exact interfa
Hamiltonian, there would beno M dependence in the equa
tion of state, that is,āM(d) would beM independent. Thus
with a good approximative interfacial Hamiltonian,āM(d)
should only weakly depend onM. In particular, the constan
ā2(d) should be approximately equal to the constantā`(d),
which itself afortiori coincides with theexactvalue of this
constant in the infinite smectic stack equation of state~as, for
M→`, the thermodynamic limit is approached anyway.! If
ā2(d)'ā`(d), the exact thermodynamic limit~bulk! prop-
erties, such as the system’s equation of state, are rap
asymtotically approached by using small stacks with jus
few manifolds (M52,3, or so!.

To examplify these features, here we consider 2D sme
phases of long semiflexible polymers (d51 case!. In fact,
these low-dimensional sterically stabilized smectic syste
exhibit the strongest finite size effects. They thus provide
best test for the approach pursued in this paper. Techn
features of the MC simulations used here are similar to th
of Ref. @23#, with the exception of the crucial interfacia
energy terms, i.e., theKsemi(q) terms entering the smal
stack effective Hamiltonian in Eq.~3.10!. Their implementa-
tion is discussed in Appendix A. The MC simulations a
used to obtain the universal functionf M ,d(P) in Eq. ~4.9!,
for stacks withM52 through six semiflexible polymers (d
51). The accurate shape of this function is needed only
8-8
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TABLE I. Universal constantsāM(1) characterizing the entropic repulsion pressure in 2D small stack
M semiflexible polymers@governed by the effective Hamiltonian~3.10!#. The finiteM data are well fitted by

the extrapolation formulaāM(1)5ā`(1)1C̄(1)M
211C̄(3/2)M

23/2 ~see Ref. @23#, with ā`(1)50.433,

C̄(1)50.060, andC̄(3/2)520.010, as indicated in the table.

M 2 3 4 5 6 `

āM(1) 0.45660.002 0.45160.002 0.44760.002 0.44460.003 0.44260.003 0.433a

aObtained by the extrapolation formula.
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the P ’s in the vicinity of the solution to Eq.~4.17! that we
need to obtain the universal constantsāM(d) by Eq. ~4.18!.
In Appendix B, we describe the strategy used to obtain
needed form of f M ,d(P). Our results for the constant
āM(d51) are listed in Table I. The Table also gives t
estimated value ofā`(d51) entering the~thermodynamic
limit ! equation of state for the sterically stabilized 2D sme
tic stacks of semiflexible polymers, which is, by Eq.~4.14!,
with d51,

P~a!5ā`~1!
~kBT!4/3

k1/3a5/3
~4.19!

with ā`(1)>0.433, as discussed hereafter. From the ta
we see thatā2(1) is only some 4% bigger thanā`(1).
Thus, by using our simple interfacial model of Sec. II inco
porated into the small stack effective Hamiltonian~3.10!, the
thermodynamic limit~bulk! properties can be very accurate
investigated by using small smectic stacks with just a f
manifolds. Figure 3 gives the constantāM(1) versusM

FIG. 3. Universal constantsāM(1) for the small stack equation
of the state, Eq.~4.14!, versus the number of manifoldsM ~open
circles!. The dashed line is the fit to data in Table I, of the for

ā`(1)1C̄(1)M
211C̄(3/2)M

23/2, with ā`(1)50.433, C̄(1)50.060,

andC̄(3/2)520.010. For comparision, we present also the univer
constantsaM(1) for stacks ofM manifolds in the constant pressu
ensemble. See Ref.@23# ~filled square!. The solid line is the fit
a`(1)1C(1)M

211C(3/2)M
23/2 with a`(1)50.433, C(1)50.250,

andC(3/2)520.213.
02170
e

-

e,

~open circles!. By discussions similar to those of Ref.@23#,
here one has the asymptotic expansion

āM~1!5ā`~1!1
C̄(1)

M
1

C̄(3/2)

M3/2
1

C̄(2)

M2
1

C̄(5/2)

M5/2
1•••

~4.20!

with C constants dependent on boundary conditions~charac-
ter of interfacial manifolds!. Our data in Table I are well fit
by Eq. ~4.20! with ā`(1)50.433, C̄(1)50.060, andC̄(3/2)
520.010 and other constants zero, see the inset Fig. 3
Fig. 3, we also present, for comparision, the constantsaM(1)
entering the equation of state in the recently studied cons
pressure ensemble ofM manifolds@23#. In this ensemble, the
elastic energy of interfacial manifolds is just their bendi
energy, in contrast to more complex elastic energy of
interfacial manifolds used here in the small stack effect
Hamiltonian, see Eqs.~3.10! and ~2.16!. Such a constan
pressure ensemble thus represents an approximation to
approach here, withKsemi(q) in Eq. ~2.16! approximated by
kq4. For this ensemble, the equation of state is again a
Eq. ~4.14!, however, with different prefactors,aM(1) ob-
tained in Ref.@23# and given here in Fig. 3 for comparisio
~full squares!. Notably from the figure,aM(1).āM(1)
.ā`(1), andboth sequencesaM(1) and āM(1) approach
ā`(1) as M→`. Still, the sequenceāM(1) has a signifi-
cantly better asymptotic approach, see the inset of Fig. 3
Fig. 3 caption. Note that, for example, the constantā2(1),
for the small stack of just two manifolds, has nearly the sa
value asa6(1), for the constant pressure ensemble of s
manifolds!

V. SUMMARY AND OUTLOOK

In this paper, we have elucidated the classical problem
the elastic free energy of semi-infinite smectic-A liquid crys-
tal that fills a semispace above a boundary smectic la
~interface! of a given shape. For the free energy of this i
terface, we have obtained an effective interface Hamilton
that takes into account discreteness due to the layered c
acter of smectic-A phases. The interface model is thus app
cable to both short and long wavelength fluctuations of
interface shape. Further, we have used our Hamiltonian
develop an efficient approach to the statistical thermodyn
ics of stacks of N flexible manifolds, such as two
dimensional smectic phases of long semiflexible polym
and three-dimensional lamellar fluid membrane phas

l

8-9
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Within our approach, the practically interesting thermod
namic limit N→` is reduced to considering a small sta
with a few interacting manifolds representing a subsystem
the infinite smectic. This has been achieved by treating
first ~the last! manifold of the small stack as an interface wi
the semi-infinite smectic medium below~above! the mani-
fold. We have documented our approach by considering
detail two-dimensional sterically stabilized smectic liqu
crystals of long semiflexible polymers with hard-core rep
sion. The exact equation of state and universal const
characterizing entropic elasticity in these phases in the t
modynamic limit are obtained, with a high accuracy, alrea
from numerical simulation of small smectic subsystems
volving just a few semiflexible polymers.

Finally, we anticipate some future application of the a
proach introduced here. By using it, one can systematic
address the long standing problem of the quantitativ
strong entropic effects on the equation of state of the bo
stacks of fluid membranes, that are stable even at zero
motic pressure@26#. Likewise, the recently experimentall
observed unbinding transition of such stacks@27# can also be
addressed along the line pursued in the present paper
these theoretically hard, but experimentally interesting pr
lems, deserve systematic studies to be pursued in future
sequent works.
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APPENDIX A

Here we present an alternative derivation of the sme
interface model of Sec. II. Deeply related to this discussio
our method to implement, in MC simulations of Sec. IV, t
interfacial terms of the small stack of effective Hamiltoni
~see Sec. III!. This method is also discussed here. For th
purposes, we consider the elastic model, Eq.~2.22!, in a
slightly more general form

Hel5E
q

F (
n51

N
1

2
Kn~q!uũn~q!u2

1 (
n51

N21
B

2
uũn11~q!2ũn~q!u2G ~A1!

with *q5*ddq/(2p)d. For the smectic stack,B5Ve f f9 (a)
52]P(a)/]a5Bsm(a)/a andKn(q)5kq4 for all values of
n. Still, for the future convenience, we allow hereKn(q)
having different forms for different manifolds in the stac
The manifoldsu1 and uN in Eq. ~A1! are the ‘‘interfacial’’
manifolds, at the bottom and the top of the stack. For c
venience, we discuss the construction of the interface Ha
tonian foruN , rather thanu1, as done in Sec. II@obviously,
if Kn(q) have the same form for alln’s, the forms of inter-
02170
-

f
e

in

-
ts
r-
y
-

-
ly
y
d
s-

All
-
b-

r
2/
st

ic
is

e

-
il-

facial Hamiltonians foru1 anduN are the same#. As in Sec.
II, we want to minimizeHel in Eq. ~A1! for a fixed shape of
the interfaceuN(x). Here we will do this insteps: in the first
step, we minimize overu1, in the second step we minimiz
overu2, etc. By the form ofHel in Eq. ~A1!, it is not hard to
show that afterm steps, the minimized elastic energy has t
form

~Hel!m steps5E
q
F1

2
Km11

(ren)~q!uũm11~q!u2

1 (
n5m12

N
1

2
Kn~q!uũn~q!u2

1 (
n5m11

N21
B

2
uũn11~q!2ũn~q!u2G ~A2!

that depends only on the manifolds (um11 ,um12 , . . . ,uN),
as the manifolds (u1 ,u2 , . . . ,um) are integrated out of the
partition function of the harmonic Hamiltonian, Eq.~A1!. By
comparing Eq.~A1! with Eq. ~A2!, we see that the effect o
the m-step minimization is to replace the bare dispersion
lation of the (m11)-st manifoldKm11(q) with a dressed

~‘‘renormalized’’! dispersion relationKm11
(ren)(q). By using the

above step-by-step minimization strategy, it can be ea
shown that the renormalized dispersion relations satisfy
recursion relation

Km11
(ren)~q!5Km11~q!1B2

B2

B1Km
(ren)~q!

. ~A3!

For the smectic stack,Km(q)5kq4 for any m. Thus, by Eq.
~A3!,

Km11
(ren)~q!5kq41B2

B2

B1Km
(ren)~q!

. ~A4!

After m5N21 steps, all the manifolds are integrated o
except of the interfacial manifolduN , for which Eq. ~A2!
reduces to the desired interfacial Hamiltonian

Hint~uN!5~Hel!(N21)2steps5E
q

1

2
KN

(ren)~q!uũN~q!u2.

~A5!

Here,KN
(ren)(q) is the desired interface dispersion relation.

can be obtained simply by applying (N21) times the recur-
sion relation in Eq.~A4! , with m51,2, . . . ,N21, and the
‘‘initial condition’’ Km51

(ren)(q)[kq4. In the practically inter-
esting limit N→` @semi-infinite smectic liquid crystal#, the

interface dispersion relation in Eq.~A5!, KN
(ren)(q)

→Ksemi(q), whereKsemi(q) is the stablefixed pointof the
recursive mapping in Eq.~A4!, i.e.,

Ksemi~q!5kq41B2
B2

B1Ksemi~q!
. ~A6!
8-10
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Solving Eq.~A6! yields, for the stable fixed point,

Ksemi~q!5AkB~q2!21S kq4

2 D 2

1
kq4

2
~A7!

in accord with the result of Sec. II@see Eqs.~2.16! and
~2.18!, with B52]P/]a therein#.

The above alternative derivation ofKsemi(q) provides a
useful idea discussed in the following, on how to impleme
the interfacial HamiltonianHint(u) into the numerical calcu-
lations such as the Monte Carlo simulations. This implem
tation is entirely nontrivial, since the form ofKsemi(q)
@which containsall powers ofq2 in its expansion# corre-
sponds to essentiallynonlocal form of Hint . This is best
seen, for example, by using the form ofKsemi(q) in Eq.
~A6!, yielding the interfacial Hamiltonian in the form

Hint~uN!5E ddxFk

2 S ]2uN~x!

]x2 D 2

1
B

2
@uN~x!#2G

2E ddx1E ddx2V~x12x2!uN~x1!uN~x2!

~A8!

with the kernel

V~x12x2!5E ddq

~2p!deiq•(x12x2)
B2

B1Ksemi~q!
. ~A9!

The second term in Eq.~A8! is a short-range nonlocal inter
action causing difficulties in practical implementations of t
interfacial Hamiltonian in a Monte Carlo simulation
Though, in principle, one may go ahead and use Eq.~A8!,
with the nonlocal kernel in Eq.~A9!, we decided for a com-
pletely different strategy, inspired by the actual physical o
gin of Ksemi(q) discussed above. Instead of modeling t
interfacial manifolduN by means ofHint in Eq. ~A5!, as a
single entity dressed by the presence of other manifold
Eq. ~A1!, one may, for example, easily implement simu
tions of the entirelocal harmonic Hamiltonian in Eq.~A1!.
This method would increase the number of the manifolds
be simulated byN21 which is equal to the number of add
tional ‘‘virtual’’ manifolds, with m52,3, . . . ,N21 in Eq.
~A6!. Such an approximation would, however, require us
a largeN @as only for N→` the fixed point,Ksemi(q), is
approached#. Obviously, this approach would not yield a re
sonable MC simulation. Still, it suggests the following mo
subtle idea on how to tackle the problem: Rather than tak
Kn(q)5kq4 for all the manifolds, we carefully choos
~‘‘tune’’ ! the forms ofKn(q) in such a way that resulting
KN

(ren)(q) in Eq. ~A5! approximates theKsemi(q) with a high
precision. In other words, by using specially chosen forms
Kn(q), the resultingKN

(ren)(q) may be made nearly the sam
asKsemi(q). Remarkably, this turns out to be possible, w
a high accuracy, just by using a small number ofN21 ad-
ditional virtual manifolds to be included in the simulation
inspired by this idea (N2151 or 2 as detailed below!. Cru-
cial for the success of this approach are, as noted ab
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specially chosen forms of the virtual manifolds’ dispersi
relationsKn(q) in Eq. ~A1!. Below, we give two examples
for this. We will work with the rescaled model@see Sec. IV,
Eqs.~4.2!, ~4.10!, and~4.11!#, for which

Ksemi~q!5A~q2!21S q4

2 D 2

1
q4

2

@see Eq.~4.11!# corresponding to Eq.~A7! with k5B51.
Our first example is

~1! N2151, i.e., one uses just one additional, virtu
manifold u1, in addition to the real interfacial manifoldu2.
We takeK1(q) andK2(q) in Hamiltonian~A1!, to be of the
form

K2~q!5q4, K1~q!5sq21k8q4. ~A10!

With this choice, Eq.~A1! reduces to the local Hamiltonian

Hel5
1

2E ddxFsS ]u1~x!

]x D 2

1k8S ]2u1~x!

]x2 D 2

1@u2~x!2u1~x!#21S ]2u2~x!

]x2 D 2G . ~A11!

After minimizing Eq. ~A11! over u1, one obtains the inter-
facial Hamiltonian in Eq.~A5! for u2, with K2

(ren)(q) therein
of the form

K2
(ren)~q!5K2~q!112

1

11K1~q!
~A12!

as directly obtained by recursion formula~A3! with B51, as
in the rescaled model. It is possible to choose the param
s andk8 in Eq. ~A10! such thatK2

(ren)(q) in Eq. ~A12! well
approximates the actual interface dispersion relat
Ksemi(q), as measured by the relative errorE,

E~q!5
K2

(ren)~q!2Ksemi~q!

Ksemi~q!
, ~A13!

which needs to be uniformly small, forall values ofq. For
example, by choosing, in Eq.~A10!,

s50.995, k850.57568, ~A14!

the magnitude of the relative error in Eq.~A13! turns out to
be smaller than 0.005 for all values ofq. The error can be
made even smaller, by using two or more virtual manifol
as demonstrated in the following example.

~2! N2152, i.e., one uses two additional, virtual man
folds u1 and u2, in addition to the real interfacial manifold
u3. We takeK1(q), K2(q), andK3(q) in Hamiltonian~A1!,
to be of the form

K3~q!5q4,

K2~q!5s9q21k9q4,

K1~q!5s8q21k8q4. ~A15!
8-11
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With this choice, Eq.~A1! reduces to the local Hamiltonian

Hel5
1

2E ddxFs8S ]u1~x!

]x D 2

1k8S ]2u1~x!

]x2 D 2

1@u1~x!2u2~x!#21s9S ]u2~x!

]x D 2

1k9S ]2u2~x!

]x2 D 2

1@u2~x!2u3~x!#21S ]2u3~x!

]x2 D 2G . ~A16!

After minimizing Eq. ~A16! over u1 and u2, one finds the
interfacial Hamiltonian, Eq.~A5!, for u3, with K3

(ren)(q)
therein obtained by recursion formula~A3! applied twice.
That is,

K3
(ren)~q!5K3~q!112

1

11K2
(ren)~q!

, ~A17!

with K2
(ren)(q) herein given by Eq.~A12!. Again, we choose

the parameterss9, k9, s8, andk8 in Eq. ~A15! to obtain a
small relative error

E~q!5
K3

(ren)~q!2Ksemi~q!

Ksemi~q!
. ~A18!

For example, by choosing, in Eq.~A15!,

s950, k951.02, s850.9995, k850.5, ~A19!

the magnitude of the relative error, Eq.~A18!, turns out to be
smaller than 431024, for all values of q. Thus, in the
scheme with two virtual manifolds, one may approxima
Ksemi(q) with an accuracy some ten times better than t
achieved with just one virtual manifold. By further increa
ing the number of virtual manifolds, the accuracy can
nc

ys

e
.

,

E

na

n
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t

e

further increased. For our purpose, the accuracy achie
with the above described scheme with two virtual manifo
was more than sufficient.

APPENDIX B

Here we discuss the issues related to calculating the a
age f M ,d(P) in Eq. ~4.9!. By the translational symmetry, i
can be written also as

f M ,d~P!5^r&

with r defined in Eq. ~4.13!. As discussed in Sec. IV
f M ,d(P) is needed with a high accuracy only for the valu
of P in the vicinity of the solution to Eq.~4.17! ~in order to
solve this equation forP). In practice, this is achieved b
first running an MC simulation for several values ofP,
yielding an interpolation formula forf M ,d(r) used to make
the first estimateP of the solution to Eq.~4.17!. Next, we
performed a single MC simulation at this value ofP and
used it to obtain the shape off M ,d in the vicinity of P. This
is accomplished by using the expansion

f M ,d~P1DP!5 f M ,d~P!1CM ,d~P!DP1O„~DP!2
…

~B1!

with

CM ,d5
d fM ,d~P!

dP
5~M21!AB^~r2^r&!2&, ~B2!

by the fluctuation-dissipation theorem associated with
Hamiltonian in Eq.~4.10!. Like f M ,d and CM ,d , the coeffi-
cients of all terms in expasion~B1! can be expressed a
equilibrium averages involving powers ofr. All these coef-
ficients can be thus obtained from asingle MC simulation
done at asinglevalue ofP. This idea was used to obtain th
form of f M ,d(P) in the vicinity of the solution to Eq.~4.17!,
without running numerous MC simulations at various valu
of P.
-
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